Exercise 37

The gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is $P V=n R T$, where n is the number of moles of the gas and $R=0.0821$ is the gas constant. Suppose that, at a certain instant, $P=8.0 \mathrm{~atm}$ and is increasing at a rate of $0.10 \mathrm{~atm} / \mathrm{min}$ and $V=10 \mathrm{~L}$ and is decreasing at a rate of $0.15 \mathrm{~L} / \mathrm{min}$. Find the rate of change of T with respect to time at that instant if $n=10 \mathrm{~mol}$.

Solution

Suppose the ideal gas law is true.

$$
P V=n R T
$$

Solve the equation for T.

$$
T=\frac{P V}{n R}
$$

Take the derivative of T with respect to t.

$$
\begin{aligned}
\frac{d T}{d t} & =\frac{d}{d t}\left(\frac{P V}{n R}\right) \\
& =\frac{1}{n R} \frac{d}{d t}(P V) \\
& =\frac{1}{n R}\left(\frac{d P}{d t} V+P \frac{d V}{d t}\right)
\end{aligned}
$$

Use the fact that $R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{K}), P=8.0 \mathrm{~atm}, d P / d t=0.10 \mathrm{~atm} / \mathrm{min}, V=10 \mathrm{~L}$, $d V / d t=-0.15 \mathrm{~L} / \mathrm{min}$, and $n=10 \mathrm{~mol}$.

$$
\begin{aligned}
\left.\frac{d T}{d t}\right|_{t=\text { instant }} & =\frac{1}{(10 \mathrm{~mol})\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)}\left[\left(0.10 \frac{\mathrm{~atm}}{\mathrm{~min}}\right)(10 \mathrm{~L})+(8.0 \mathrm{~atm})\left(-0.15 \frac{\mathrm{~L}}{\mathrm{~min}}\right)\right] \\
& \approx-0.243605 \frac{\mathrm{~K}}{\mathrm{~min}}
\end{aligned}
$$

